EECS1022 Programming for Mobile Computing

 (Winter 2021)Q\&A - Lectures W4

Monday, February 8

Is there a way to use debugger on a specific JUnit testcase?
I tried to put breakpoints on the case, but when I run debugger it just runs a different case.

I understand the code of each Short-Circuit Evaluation
ex. (one using conjunction, the other disjunction) gives equivalent outputs but with different behaviour.
However, I don't think I can adequately and concisely put into words my justification why I think so.
I can only think of following each program with specific ex. cases
(1. When $x=0,2$. when $y / x>2$ and 3 . when $y / x<=2$) but I wonder if there's a better way.

Short-Circuit Evaluation: \&\&

Left Operand op	Right Operand op	op	
true	op 2		
true	true	true	
false	false	false	
false	true	false	

Test Inputs:

$$
\begin{aligned}
& x=0, y=10 \\
& x=5, y=10
\end{aligned}
$$

(A)

Any logical error?
System.out.println("Enter x:");
int $x=$ input.nextInt();

System.out.println("Enter y:");
int $y=$ input. nextInt(); ©

System.out.println("y x is greater than 2");
\}
else $\left\{/ *!(x!=0 \& \& y / x>2)=(x==0 \| y / x<=2)^{* /}\right.$
if($x=0$) \{
System.out.println("Error: Division by Zero");
\}
else \{ System.out.println("y / x is not greater than 2");
\}
\}

Is SCE effectiv?

$$
i>=0 \& \& \quad i<a . \text { length } \& \& \quad \underline{\underline{a[i]}}>0
$$

$\frac{\text { discuis }}{\text { this Tectaris }}$
VI

$$
c>=0 \quad \| \quad l<a \cdot \operatorname{length} \quad a[\bar{c}]>0
$$

Wrong $\bar{i}=$ c.length (too lavge)
$(T) \rightarrow$ go to the body of if
$\bar{\tau}$ negatice:

$$
\text { regatie: : } F \text { F\| Grash. }
$$

$\underset{\sim}{f(\ldots)} \rightarrow$ first smile, statamat.
Common Errors: Ambiguous "else"
My question is, why is there an ambiguity? First if has no \{\} so the first line is the only one belonging to it and else cannot be a nested conditional inside the first if?

Test Inputs:

$$
\begin{gathered}
x=(20 \\
\frac{\text { if }(\cdots)\{\cdots\}}{i f(\cdots)\{-3 \operatorname{edse}\{\cdots\}}
\end{gathered}
$$

Test Inputs:

$$
x=20
$$

